Scientists have found that six polymer alternatives to DNA can pass on genetic information, and have evolved one type to specifically bind target molecules.1 They say that their work reveals both broader chemical possibilities for these key life functions and provides a powerful tool for nanotechnology and medicine.
'There is no overwhelming functional imperative for life to be based on DNA or RNA,' says Phil Holliger from the MRC Laboratory of Molecular Biology in Cambridge, UK, who led the team. 'Other polymers can perform these functions, at least at a basic level.' Holliger's team's xeno-nucleic acid (XNA) polymers each replace DNA's ribofuranose sugar ring with six other cyclic structures that can still form helical chains and base pairings. But rather than using relatively inefficient chemical synthesis, the scientists wanted to exploit polymerase and reverse transcriptase enzymes to copy genetic information from DNA templates to XNAs. In living organisms, polymerases can make RNA from nucleotide monomers using existing DNA strands as templates. Reverse transcriptases can then create a copy of the original DNA strand from that RNA in the same way.Yet those processes don't normally work with the kind of unnatural nucleotides the team used. Consequently, MRC scientist Vitor Pinheiro first mutated and then selected polymerase enzymes that best processed 1,5-anhydrohexitol nucleic acid (HNA) and cyclohexenyl nucleic acid (CeNA) nucleotide trisphosphates. As well as isolating an enzyme that would make long enough polymers with all six XNA types to encode genetic information, he similarly engineered reverse transcriptases. Together the enzymes could accurately replicate genetic information from DNA to XNA and back, but with enough copying mistakes for functions to evolve. 'For the best ones it's 99% accurate or better,' Holliger tells Chemistry World. 'You really don't need more than that.'
Xeno-nucleic acids can store genetic information that can be processed into
DNA and back again by mutated polymerases
© Science/AAAS
|
Jack Szostak, who investigates processes that allowed early chemical and biological evolution on the Earth at Harvard University, US, calls Holliger's team's work 'very exciting'. 'This is very interesting with respect to the origin of life,' he says. 'In principle, many different polymers could serve the roles of RNA and DNA in living organisms. Why then does modern biology use only RNA and DNA? The answer probably lies in two "filters". First, only some nucleic acids could actually be made on the early Earth. Second, of those polymers that actually could be made, some may have been functionally superior to others in terms of ease or accuracy of replication, or ability to generate catalytic folded structures.'